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Finding relevant data
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Methodology



Initial sample set

• 10-15 Upatre samples

• Both packed and not packed

• Written in assembly and in C++

• Ranging from few KB to hundreds of KB in size

• Found collection of Upatre hashes and used it as a starting point [1]

[1]    J. Bader, "Collection of Upatre Samples," [Online]. Available: https://www.johannesbader.ch/projects/upcol.php



Code similarity

• Imphash – Import Table hash

• ReversingLabs Hashing Algorithm (“RHA”)

• Correlation of files based on functional 
features

• Multiple precision levels

• Lowest level used to match as much files 
as possible

• Initial sample set yielded 342 RHA buckets

• Focused only on ones with 1000+ samples

• 4 custom packers

• 2 downloaders



Yara rules

• As loose as possible

• Focused on the most important parts

• Custom decryption methods

• Internal data parsing

• Configuration parsing

• Found even more RHA buckets

• No new custom packers or downloaders

• Found samples are sometimes classified 
with the name of the family they 
download (zbot, dyre, …)



Elastic Search/Kibana

• For quick check of data

• Various searches and data correlation

• All results can be exported as .csv files



Custom Packers



Custom packers

• Four different custom packers which pack Upatre downloader

• Run PE

• Anti-debugging and anti-emulation

• Their code differs significantly but all follow similar principles
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cpDalek

• Custom packer written in C++ 

• Most commonly used packer in samples we have observed

• 24 versions which unpack multiple versions of downloader

• Differences between versions in main function

• Embedded files are encrypted



C++ main
AntiDebugging
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cpTooly

• Lots of anti-emulation code

• Embedded files are encrypted and compressed

• Written in assembly
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cpEllie

• Lots of anti-emulation code

• Obfuscated

• Written in assembly
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cpLupus

• Polymorphic custom packer for Upatre with many variants

• 20+ versions of polymorphic first layer

• Second layer always the same

• Embedded file is encrypted using modified RC4 algorithm

• Detailed analysis of one of cpLupus variants can be found in [2]

[2]    J. Bader, “Win32/Upatre.BI - Part One,” [Online]. Available: https://johannesbader.ch/2015/06/Win32-Upatre-BI-Part-1-Unpacking/



Downloaders



Downloaders

• Differences between downloaders are too significant to consider all of them 
a single malware family

• 91 versions of downloaders which spread across multiple families

• Families differ in 

• programming language

• anti-reversing techniques 

• layout of configurations



dlThunder

• The simplest downloader 
classified as Upatre

• Often seen unpacked and 
unprotected

• Can be found in overlays of 
other custom packers
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dlUpatreA and dlUpatreB

• Written in C++ 

• 81 versions

• Most of the differences between versions on the first layer

• Mimics ordinary application with UI 

• Use RegisterClass callback to execute malicious code
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dlUpatreC

• The only Upatre version which is protected by a custom packer

• 6 versions of dlUpatreC with size of only 5 KB

• It can have encrypted configuration (single byte XOR which is usually 0x13)

• Reminds of second layer of dlUpatreA and dlUpatreB 

• Detailed analysis of dlUpatreC can be found in [2]

[2]    J. Bader, “Win32/Upatre.BI - Part One,” [Online]. Available: https://johannesbader.ch/2015/06/Win32-Upatre-BI-Part-1-Unpacking/



dlUpatreD

• The oldest version of Upatre 

• Written in assembly

• Uses anti-emulation techniques and RegisterClass callback

• Different configuration when compared to other versions
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dlUpatre configurations

• DlUpatreA, dlUpatreB and dlUpatreC have the same configuration [2]

• Mostly variable sized and null terminated strings

• Structures at the end hold indexes into string array

[2]    J. Bader, “Win32/Upatre.BI - Part One,” [Online]. Available: https://johannesbader.ch/2015/06/Win32-Upatre-BI-Part-1-Unpacking/
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Infected Upatre websites
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Try this at home



Try this at home

• Choose family of interest

• Find few samples which differ as much as possible

• Use code similarity (imphash, or create your own) to find even more samples

• Write small and loose Yara rules to capture even more diversity

• Analyse samples to extract interesting info

• Load results in Elastic Search and visualise with Kibana

• Use Maltego transforms for additional info (Whois, DNS lookup, VirusTotal API, …)
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