
Picking the right needles
from the malware haystack

Katja Pericin

BSidesLjubljana::0x7E2

Outline

• Finding relevant data

• Methodology

• Custom packers

• Downloaders

• Results

• Try this at home

Finding relevant data

0

1

2

3

4

5

6

20/2/18 21/2/18 22/2/18 23/2/18 24/2/18 25/2/18 26/2/18 27/2/18 28/2/18 1/3/18 2/3/18 3/3/18 4/3/18 5/3/18

M
IL

L
IO

N
S

Daily sample count

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

20/2/18 21/2/18 22/2/18 23/2/18 24/2/18 25/2/18 26/2/18 27/2/18 28/2/18 1/3/18 2/3/18 3/3/18 4/3/18 5/3/18

M
IL

L
IO

N
S

Daily new sample count

0

100

200

300

400

500

600

20/2/18 21/2/18 22/2/18 23/2/18 24/2/18 25/2/18 26/2/18 27/2/18 28/2/18 1/3/18 2/3/18 3/3/18 4/3/18 5/3/18

T
H

O
U

S
A

N
D

S

Malware count by type

Infostealer Exploit Other Backdoor Adware Downloader Worm PUA Virus Trojan

Methodology

Initial sample set

• 10-15 Upatre samples

• Both packed and not packed

• Written in assembly and in C++

• Ranging from few KB to hundreds of KB in size

• Found collection of Upatre hashes and used it as a starting point [1]

[1] J. Bader, "Collection of Upatre Samples," [Online]. Available: https://www.johannesbader.ch/projects/upcol.php

Code similarity

• Imphash – Import Table hash

• ReversingLabs Hashing Algorithm (“RHA”)

• Correlation of files based on functional
features

• Multiple precision levels

• Lowest level used to match as much files
as possible

• Initial sample set yielded 342 RHA buckets

• Focused only on ones with 1000+ samples

• 4 custom packers

• 2 downloaders

Yara rules

• As loose as possible

• Focused on the most important parts

• Custom decryption methods

• Internal data parsing

• Configuration parsing

• Found even more RHA buckets

• No new custom packers or downloaders

• Found samples are sometimes classified
with the name of the family they
download (zbot, dyre, …)

Elastic Search/Kibana

• For quick check of data

• Various searches and data correlation

• All results can be exported as .csv files

Custom Packers

Custom packers

• Four different custom packers which pack Upatre downloader

• Run PE

• Anti-debugging and anti-emulation

• Their code differs significantly but all follow similar principles

obfuscated first
layer

decrypt second
layer

decrypt /
decompress

embedded file

load embedded
file imports

execute file

cpDalek

• Custom packer written in C++

• Most commonly used packer in samples we have observed

• 24 versions which unpack multiple versions of downloader

• Differences between versions in main function

• Embedded files are encrypted

C++ main
AntiDebugging
AntiEmulation

decrypt second
layer

GetTickCount

ExitProcess
jump to second

layer

load second layer
imports

allocate new buffer
and copy encrypted

file into it
decrypt buffer

copy decrypted
file in current

process image
base

jump to entry
point of decrypted

file

if <= 0
no yes

cpTooly

• Lots of anti-emulation code

• Embedded files are encrypted and compressed

• Written in assembly

no

yes

jump to
second layer

jump to
third
layer

try to open
existing file

config.ini

read 0x400 bytes
from file

count new lines

AntiEmulation

decrypt
VirtualProtect
string, call VP

decrypt second
layer

allocate buffer for
third layer

copy encrypted
data to buffer

decrypt buffer
load third layer

imports

allocate buffer for
embedded file and
copy data to buffer

if <= 0

get current file
name

decrypt file

decompress file
(LZO)

copy file to
original process
address space

load imports

jump to entry
point of

embedded file

cpEllie

• Lots of anti-emulation code

• Obfuscated

• Written in assembly

jump to
second

layer

jump to entry
point

copy encrypted file
to newly allocated

buffer

copy second
layer to new

buffer

load second layer
imports

decrypt second
layer

allocate buffer
WriteProcessMemory

(current process)
load imports

multiple jumps and calls
to GetProfileInt and
GetLongPathName

functions

copy buffer to current
process image base

decrypt buffer

cpLupus

• Polymorphic custom packer for Upatre with many variants

• 20+ versions of polymorphic first layer

• Second layer always the same

• Embedded file is encrypted using modified RC4 algorithm

• Detailed analysis of one of cpLupus variants can be found in [2]

[2] J. Bader, “Win32/Upatre.BI - Part One,” [Online]. Available: https://johannesbader.ch/2015/06/Win32-Upatre-BI-Part-1-Unpacking/

Downloaders

Downloaders

• Differences between downloaders are too significant to consider all of them
a single malware family

• 91 versions of downloaders which spread across multiple families

• Families differ in

• programming language

• anti-reversing techniques

• layout of configurations

dlThunder

• The simplest downloader
classified as Upatre

• Often seen unpacked and
unprotected

• Can be found in overlays of
other custom packers

execute
downloaded

file

running
from
tmp?

download file

connect to
internet

execute
dumped file

dump itself in
tmp folder

GetModuleFileName

no yes

dlUpatreA and dlUpatreB

• Written in C++

• 81 versions

• Most of the differences between versions on the first layer

• Mimics ordinary application with UI

• Use RegisterClass callback to execute malicious code

RegisterClass

Anti-emulation
Jmp to 2nd layer

decrpytion

call
VirtualProtect

decrypt
VirtualProtect

string

decrypt second
layer

 callback

parse
configuration

decrypt and
decompress

file

execute file

download file

yes

running
from tmp?

dump to tmp
and execute

no

file valid?

yes

no

jump to second
layer code

read second
layer data

load imports
parse config

convert to utf16

dump original
executable in tmp

folder

try to open
existing txt file in

tmp folder

execute dumped
file

delete original file

download file

create txt file
connect to

internet

execute
downloaded file

decrypt file

send victim IP and
computer name to

C&C

contains
IP

address

file size >
0x249F0

file
exists?

file
valid?

no yes

no
no

no

yesyesyes

load imports
parse config

convert to utf16

execute dumped
file

create file in tmp
folder

delete original file

download file

dump itself in
created file

connect to
internet

execute
downloaded file

decrypt and
decompress

send victim IP and
computer name to

C&C

file
contains
“ddre”

file size >
0x249F0

file
exists?

starts
with
“MZ”

no yes

no
no

no

yesyesyes

dlUpatreC

• The only Upatre version which is protected by a custom packer

• 6 versions of dlUpatreC with size of only 5 KB

• It can have encrypted configuration (single byte XOR which is usually 0x13)

• Reminds of second layer of dlUpatreA and dlUpatreB

• Detailed analysis of dlUpatreC can be found in [2]

[2] J. Bader, “Win32/Upatre.BI - Part One,” [Online]. Available: https://johannesbader.ch/2015/06/Win32-Upatre-BI-Part-1-Unpacking/

dlUpatreD

• The oldest version of Upatre

• Written in assembly

• Uses anti-emulation techniques and RegisterClass callback

• Different configuration when compared to other versions

load imports

dump itself to tmp
folder

execute dumped
file

download file

connect to
internet

execute
downloaded file

decrypt and
decompress file

send victim IP and
computer name to

C&C

contains
IP

address

file size
> 0x7D0

running
from
tmp

starts
with
“MZ”

no

yes

no

no

no

yes

yes

yes

starts
with
“MZ”

execute
downloaded file

no

yes

dlUpatre configurations

• DlUpatreA, dlUpatreB and dlUpatreC have the same configuration [2]

• Mostly variable sized and null terminated strings

• Structures at the end hold indexes into string array

[2] J. Bader, “Win32/Upatre.BI - Part One,” [Online]. Available: https://johannesbader.ch/2015/06/Win32-Upatre-BI-Part-1-Unpacking/

printf format string

printf format string

open

HTTP content type

HTTP content type

HTTP request type

user agent

dump file name

C&C server

string1

string2

...

stringN

terminator = 0x01

K = key count

K keys

M = struct count

M structs

port

tmp file name

printf format string

printf format string

open

HTTP content type

HTTP content type

HTTP request type

user agent

dump file name

C&C server

string1

string2

...

stringN

terminator = 0x01

K = key count

K keys

M = struct count

M structs

port

path_index

server_index

binary_index

reserved0

reserved1

file_index

reserved2

path_index

server_index

binary_index

reserved0

reserved1

file_index

dlUpatreA, dlUpatreB and dlUpatreC configurations

printf format string

printf format string

open

HTTP content type

HTTP content type

user agent

dump file name

save file name

server1

server2

port

printf format string

printf format string

open

HTTP content type

HTTP content type

user agent

dump file name

save file name

server1

server2

server3

server4

port

dlUpatreD configurations

Results

2

41
40

4

7

24

1

0

5

10

15

20

25

30

35

40

45

RHA Buckets

19%

14%

17%

5%

29%

14%

2%

Upatre samples by family

dlUpatreA dlUpatreB dlUpatreC dlUpatreD

dlThunder cpDalek cpEllie

0

100

200

300

400

500

600

700

800

900

T
H

O
U

S
A

N
D

S
Sample counts

dlUpatreA dlUpatreB dlUpatreC dlUpatreD dlThunder cpDalek cpEllie

0.4

0.5

0.6

0.7

0.8

0.9

1

AV detection rates

Upatre infected websites

127

12119

65

dlUpatreA

dlUpatreC dlUpatreB

24

89

0

0

50

100

150

200

250

300

350

dlUpatreA dlUpatreB dlUpatreC dlUpatreD dlThunder

Unique server count by family

0

50

100

150

200

250

300

Unique server count per quarter

Infected Upatre websites

Upatre C&C servers

Try this at home

Try this at home

• Choose family of interest

• Find few samples which differ as much as possible

• Use code similarity (imphash, or create your own) to find even more samples

• Write small and loose Yara rules to capture even more diversity

• Analyse samples to extract interesting info

• Load results in Elastic Search and visualise with Kibana

• Use Maltego transforms for additional info (Whois, DNS lookup, VirusTotal API, …)

Bibliography

[1] J. Bader, "Collection of Upatre Samples," [Online]. Available:

https://www.johannesbader.ch/projects/upcol.php

[2] J. Bader, “Win32/Upatre.BI - Part One,” [Online]. Available:

https://johannesbader.ch/2015/06/Win32-Upatre-BI-Part-1-Unpacking/

[3] KoreLogic, “Callback Functions in Malware,” 27 05 2014. [Online]. Available:

https://blog.korelogic.com/blog/2014/05/27/malware_callback

[4] T. H. a. J. C. Brandon Levene, “Upatre: Old Dog, New [Anti-Analysis] Tricks,” 20 11

2015. [Online]. Available: http://researchcenter.paloaltonetworks.com/2015/11/upatre-

old-dog-new-anti-analysis-tricks/

[5] Symantec, “Dyre: Emerging threat on financial fraud landscape,” 13 June 2015.

[Online]. Available:

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepa

pers/dyre-emerging-threat.pdf

[5] B. Griffin, “The Many Faces of Gameover Zeus,” 02 05 2014. [Online]. Available:

http://cdn2.hubspot.net/hub/241665/file-951587296-

pdf/T3_SpecialTopicReport_05_02_2014.pdf

[7] ReversingLabs, “ReversingLabs Hashing Algorithm,” ReversingLabs, [Online].

Available: https://www.reversinglabs.com/technology/reversinglabs-hash-

algorithm.html

[8] ReversingLabs, “Malware Analysis Solution - TitaniumCore,” [Online]. Available:

https://www.reversinglabs.com/products/malware-analysis-solution.html

[9] Elasticsearch, “Kibana,” [Online]. Available:

https://www.elastic.co/products/kibana

[10] Paterva, “Maltego CE,” [Online]. Available:

https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php

